Apple Files for MacBook Air & Time Capsule Trademarks
Gaming News: Intel Acquires Project Offset

Apple Patent Reveals Advanced Illumination Touch Pad for iPod Classic

ILLUMINATING CLICK WHEEL

On January 24, the US Patent & Trademark Office published Apple's patent application titled Illuminated touch pad.  Apple's patent generally relates to touch pads that provide visual feedback. More particularly, the present invention relates to illuminated touch pads that use light to provide feedback. Apple’s current patent would strongly suggest that the iPod classic could likely take another leap forward in the future with an advanced touch pad that displays unique illumination attributes. Apple’s current patent also covers the very touch pad features that debuted in their new MacBook Air earlier this month at MacWorld.  

 

Feedback Mechanisms for Touch Pads Overview  

 

The present invention pertains to improved feedback mechanisms for touch pads. One aspect relates to devices capable of illuminating the touch sensitive surface of the touch pad. Another aspect relates to methods for providing visual feedback at the touch pad.

 

1 ILLUMINATING


Apple’s patent FIG. 1 is a simplified block diagram of an input device 10, in accordance with one embodiment of the present invention. The input device 10 may be a standalone peripheral device that connects to a host device through wired or wireless connections or it may be integrated into a host device (e.g., hard wired). In either case, the input device 10 is configured to provide inputs to the host device. Examples of host devices include any consumer related electronic device such as computers, PDAs, media players, telephones, etc.

 

In order to generate inputs as for example initiating commands, making selections or tracking, the input device 10 includes an object sensing mechanism 12 configured to detect one or more objects in close proximity to and/or in contact with an input surface 13. The object sensing mechanism 12 may be based on proximity sensing and/or touch sensing.

 

In the case of proximity sensing, the input surface 13 may be the surface directly underneath a proximity sensing field. The object sensing mechanism 12 generates input signals when an object such as a finger (or stylus) is moved above the input surface and within the sensing field (e.g., x and y plane), from an object holding a particular position above the surface and within the sensing field and/or by an object moving through or in and out of the sensing field (e.g., z direction). Proximity detection may be based on technologies including but not limited to capacitive, electric field, inductive, hall effect, reed, eddy current, magneto resistive, optical shadow, optical visual light, optical IR, optical color recognition, ultrasonic, acoustic emission, radar, heat, sonar, conductive or resistive and the like.

 

In the case of touch sensing, the input surface 13 may be a touch surface that is sensitive to direct physical touch. The object sensing mechanism 12 generates input signals when an object in contact with the input surface 13 is moved across the input surface (e.g., x and y plane), from an object holding a particular position on the input surface and/or by an object tapping on the input surface. Touch sensing may be based on technologies including but not limited to resistive, capacitive, infrared and surface acoustic wave. Examples of touch sensing devices that utilize these technologies include touch pads, touch screens, and the like.

 

Illumination Regions  

 

2A - ILLUMINATING

In one embodiment, the input surface is broken up into illumination regions, and whichever region is closest to the detected object is illuminated. By way of example, and referring to FIG. 13A, if the user places their finger over a single angular segment of the distribution panel that particular angular segment is illuminated. If the user simultaneously places their finger over multiple segments one of two things may occur. In one implementation, both segments are illuminated. In another implementation, only one of the segments is illuminated. In the later case, a decision may be made as to which segment is the intended segment.

 

3B - ILLUMINATING

In another embodiment, the input surface is broken up into illumination nodes or points (pixilated), and those points contained within and/or surrounding the detected object area are illuminated. In one implementation, at least the area adjacent the object is illuminated. By way of example, and referring to FIG. 14A, if the user places their finger over the input surface, illumination points adjacent and surrounding the location of the finger are illuminated. In some cases, the illumination points are only those points next to the finger (e.g., halo). In other cases, the illuminated points extend away from the finger as for example in a star like configuration.

 

4 ILLUMINATING

Apple’s patents FIGS. 16A-16D illustrate one implementation where the illuminated portion follows the motion of the finger as it is moved across the surface. In this illustration, illuminated segments are configured to follow the motion of the finger as it is moved across the surface. FIG. 16A illustrates the state when no objects are detected. FIG. 16B illustrates the state when an object is detected, and the segment underneath the object is illuminated. FIG. 16C illustrates the state where the illuminated segment follows the moving finger. FIG. 16D illustrates one implementation where the illuminated segment further includes a leading edge, body and trailing edge. The leading edge indicates the direction of the motion, the body indicates the current location of the finger, and the trailing edge indicates where the finger has been.

 

The leading edge, body and trailing edge may have different illumination profiles. For example, the leading edge may have a high intensity level, the body may have a medium intensity level and the trailing edge may have a low intensity level. Alternatively, the leading edge may have a low intensity level, the body may have a high intensity level, and the trailing edge may have a low intensity level. Alternatively or additionally, the colors of these components may differ. For example, the leading edge may be red, the body may be orange and the trailing edge may be yellow. Furthermore, the trailing edge may include an illumination tail. For example, the trailing edge may be segmented into regions that go from higher intensity to lower intensity levels (e.g., fades outwardly from body).

 

5 - ILLUMINATING

Apple’s patent FIGS. 17A to 17D illustrate another implementation where the illuminated portion follows the motion of the finger as it is moved across the surface. In this illustration, the area around the finger is illuminated and configured to follow the motion of the finger as it is moved across the surface. FIG. 17A illustrates the state when no objects are detected. FIG. 17B illustrates the state when an object is detected, and the area around the object is illuminated (e.g., halo). FIG. 17C illustrates the state where the illuminated area follows the moving finger. FIG. 17D illustrates one implementation where the illuminated area includes a body and a tail (e.g., comet). The body surrounds the finger with illumination and the tail tapers away from the body to a point. The tail trails the body as the body moves around the input surface. The tail therefore indicates the previous location of the object. The tail typically has a lower intensity level than the body. The intensity of the tail may even vary from higher to lower intensity levels as for example over its length or from its core to its edge.

 

6 ILLUMINATING

Apple states that the intensity of the illumination may be varied based on the acceleration of the moving object. For example, the intensity may be increased with increased acceleration and the intensity may be decreased with decreased acceleration. In another embodiment, thresholds are used. For example, a first intensity level may be used for high acceleration, a second intensity level may be used for low acceleration, and a third intensity level may be used for no acceleration (stationary).

 

By way of example and referring to FIG. 25, low intensity illumination is provided when a touch is first detected, medium intensity illumination is provided when the object is slowly moved around the input surface (e.g., low acceleration), and high intensity illumination is provided when the object is quickly moved around the input surface (e.g., high acceleration). Alternatively, the intensity may continuously vary according to the acceleration of the object.

 

Not limited to iPod Touch Pads 

 

7 ILLUMINATINGWhile Apple’s invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention.

 

For example, although the invention was primarily directed at touch pads, it should be pointed out that this is not a limitation and that invention may be applied to other touch sensing devices as for example touch sensitive housings and touch sensing palm rests. In fact, Apple’s new MacBook Air incorporates the very examples laid out in patent figures 20 A & B noted above.

 

Apple credits Stanley C. Ng and Duncan Robert Kerr as the inventors of patent 20080018617.

 

NOTICE: Patently Apple presents only a brief summary of patents with associated graphic(s) for journalistic news purposes as each such patent application and/or grant is revealed by the U.S. Patent & Trade Office. Readers are cautioned that the full text of any patent application and/or grant should be read in its entirety for further details. For additional information on today's patent(s), simply feed the individual patent number(s) noted above into this search engine

Comments

The comments to this entry are closed.